\(\int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [367]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 204 \[ \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {9 i \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{32 \sqrt {2} a^{5/2} d}+\frac {9 i a}{28 d (a+i a \tan (c+d x))^{7/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}+\frac {9 i}{40 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i}{16 a d (a+i a \tan (c+d x))^{3/2}}+\frac {9 i}{32 a^2 d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

-9/64*I*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(5/2)/d*2^(1/2)+9/32*I/a^2/d/(a+I*a*tan(d*x+c)
)^(1/2)+9/28*I*a/d/(a+I*a*tan(d*x+c))^(7/2)-1/2*I*a^2/d/(a-I*a*tan(d*x+c))/(a+I*a*tan(d*x+c))^(7/2)+9/40*I/d/(
a+I*a*tan(d*x+c))^(5/2)+3/16*I/a/d/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {3568, 44, 53, 65, 212} \[ \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {9 i \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{32 \sqrt {2} a^{5/2} d}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}+\frac {9 i}{32 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {9 i a}{28 d (a+i a \tan (c+d x))^{7/2}}+\frac {9 i}{40 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i}{16 a d (a+i a \tan (c+d x))^{3/2}} \]

[In]

Int[Cos[c + d*x]^2/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(((-9*I)/32)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*a^(5/2)*d) + (((9*I)/28)*a)/(d*(a
 + I*a*Tan[c + d*x])^(7/2)) - ((I/2)*a^2)/(d*(a - I*a*Tan[c + d*x])*(a + I*a*Tan[c + d*x])^(7/2)) + ((9*I)/40)
/(d*(a + I*a*Tan[c + d*x])^(5/2)) + ((3*I)/16)/(a*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((9*I)/32)/(a^2*d*Sqrt[a +
 I*a*Tan[c + d*x]])

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3568

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[1/(a^(m - 2)*b
*f), Subst[Int[(a - x)^(m/2 - 1)*(a + x)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x
] && EqQ[a^2 + b^2, 0] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (i a^3\right ) \text {Subst}\left (\int \frac {1}{(a-x)^2 (a+x)^{9/2}} \, dx,x,i a \tan (c+d x)\right )}{d} \\ & = -\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}-\frac {\left (9 i a^2\right ) \text {Subst}\left (\int \frac {1}{(a-x) (a+x)^{9/2}} \, dx,x,i a \tan (c+d x)\right )}{4 d} \\ & = \frac {9 i a}{28 d (a+i a \tan (c+d x))^{7/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}-\frac {(9 i a) \text {Subst}\left (\int \frac {1}{(a-x) (a+x)^{7/2}} \, dx,x,i a \tan (c+d x)\right )}{8 d} \\ & = \frac {9 i a}{28 d (a+i a \tan (c+d x))^{7/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}+\frac {9 i}{40 d (a+i a \tan (c+d x))^{5/2}}-\frac {(9 i) \text {Subst}\left (\int \frac {1}{(a-x) (a+x)^{5/2}} \, dx,x,i a \tan (c+d x)\right )}{16 d} \\ & = \frac {9 i a}{28 d (a+i a \tan (c+d x))^{7/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}+\frac {9 i}{40 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i}{16 a d (a+i a \tan (c+d x))^{3/2}}-\frac {(9 i) \text {Subst}\left (\int \frac {1}{(a-x) (a+x)^{3/2}} \, dx,x,i a \tan (c+d x)\right )}{32 a d} \\ & = \frac {9 i a}{28 d (a+i a \tan (c+d x))^{7/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}+\frac {9 i}{40 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i}{16 a d (a+i a \tan (c+d x))^{3/2}}+\frac {9 i}{32 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {(9 i) \text {Subst}\left (\int \frac {1}{(a-x) \sqrt {a+x}} \, dx,x,i a \tan (c+d x)\right )}{64 a^2 d} \\ & = \frac {9 i a}{28 d (a+i a \tan (c+d x))^{7/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}+\frac {9 i}{40 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i}{16 a d (a+i a \tan (c+d x))^{3/2}}+\frac {9 i}{32 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {(9 i) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{32 a^2 d} \\ & = -\frac {9 i \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{32 \sqrt {2} a^{5/2} d}+\frac {9 i a}{28 d (a+i a \tan (c+d x))^{7/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{7/2}}+\frac {9 i}{40 d (a+i a \tan (c+d x))^{5/2}}+\frac {3 i}{16 a d (a+i a \tan (c+d x))^{3/2}}+\frac {9 i}{32 a^2 d \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.34 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.25 \[ \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {i a \operatorname {Hypergeometric2F1}\left (-\frac {7}{2},2,-\frac {5}{2},\frac {1}{2} (1+i \tan (c+d x))\right )}{14 d (a+i a \tan (c+d x))^{7/2}} \]

[In]

Integrate[Cos[c + d*x]^2/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((I/14)*a*Hypergeometric2F1[-7/2, 2, -5/2, (1 + I*Tan[c + d*x])/2])/(d*(a + I*a*Tan[c + d*x])^(7/2))

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 779 vs. \(2 (160 ) = 320\).

Time = 10.47 (sec) , antiderivative size = 780, normalized size of antiderivative = 3.82

method result size
default \(\frac {2184 i \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+720 \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+630 i \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+720 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )-400 i \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+2184 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-1260 \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sin \left (d x +c \right )-1680 \sin \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-630 i \left (\sec ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-945 i \sec \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-630 \tan \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-1680 \tan \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-630 i \sec \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+1260 i \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+315 \tan \left (d x +c \right ) \sec \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-400 i \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-315 i \left (\sec ^{2}\left (d x +c \right )\right ) \arctan \left (\frac {\cos \left (d x +c \right )+1+i \sin \left (d x +c \right )}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )}{2240 d \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+1\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (1+i \tan \left (d x +c \right )\right )^{2} a^{2}}\) \(780\)

[In]

int(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/2240/d/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)/(cos(d*x+c)+1)/(a*(1+I*tan(d*x+c)))^(1/2)/(1+I*tan(d*x+c))^2/a^2*(
2184*I*cos(d*x+c)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+720*sin(d*x+c)*cos(d*x+c)^2*(-cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)+630*I*arctan(1/2*(cos(d*x+c)+1+I*sin(d*x+c))/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+720*(-co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*sin(d*x+c)-400*I*cos(d*x+c)^2*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+218
4*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-1260*arctan(1/2*(cos(d*x+c)+1+I*sin(d*x+c))/(cos(d*x+c)+1)/(-cos(d*x+c)
/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-1680*sin(d*x+c)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-630*I*sec(d*x+c)^2*(-cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)-945*I*sec(d*x+c)*arctan(1/2*(cos(d*x+c)+1+I*sin(d*x+c))/(cos(d*x+c)+1)/(-cos(d*x
+c)/(cos(d*x+c)+1))^(1/2))-630*tan(d*x+c)*arctan(1/2*(cos(d*x+c)+1+I*sin(d*x+c))/(cos(d*x+c)+1)/(-cos(d*x+c)/(
cos(d*x+c)+1))^(1/2))-1680*tan(d*x+c)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-630*I*sec(d*x+c)*(-cos(d*x+c)/(cos(d*
x+c)+1))^(1/2)+1260*I*cos(d*x+c)*arctan(1/2*(cos(d*x+c)+1+I*sin(d*x+c))/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c
)+1))^(1/2))+315*tan(d*x+c)*sec(d*x+c)*arctan(1/2*(cos(d*x+c)+1+I*sin(d*x+c))/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos
(d*x+c)+1))^(1/2))-400*I*cos(d*x+c)^3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-315*I*sec(d*x+c)^2*arctan(1/2*(cos(d*
x+c)+1+I*sin(d*x+c))/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 305 vs. \(2 (147) = 294\).

Time = 0.25 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.50 \[ \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {{\left (-315 i \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {1}{a^{5} d^{2}}} e^{\left (7 i \, d x + 7 i \, c\right )} \log \left (4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} + a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + 315 i \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {1}{a^{5} d^{2}}} e^{\left (7 i \, d x + 7 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-35 i \, e^{\left (10 i \, d x + 10 i \, c\right )} + 353 i \, e^{\left (8 i \, d x + 8 i \, c\right )} + 544 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 214 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 68 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 10 i\right )}\right )} e^{\left (-7 i \, d x - 7 i \, c\right )}}{2240 \, a^{3} d} \]

[In]

integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/2240*(-315*I*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(7*I*d*x + 7*I*c)*log(4*(sqrt(2)*sqrt(1/2)*(a^3*d*e^(2*I*d*
x + 2*I*c) + a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) + a*e^(I*d*x + I*c))*e^(-I*d*x - I*c))
 + 315*I*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(7*I*d*x + 7*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(a^3*d*e^(2*I*d*x + 2
*I*c) + a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + sq
rt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-35*I*e^(10*I*d*x + 10*I*c) + 353*I*e^(8*I*d*x + 8*I*c) + 544*I*e^(6*
I*d*x + 6*I*c) + 214*I*e^(4*I*d*x + 4*I*c) + 68*I*e^(2*I*d*x + 2*I*c) + 10*I))*e^(-7*I*d*x - 7*I*c)/(a^3*d)

Sympy [F]

\[ \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\cos ^{2}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cos(d*x+c)**2/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral(cos(c + d*x)**2/(I*a*(tan(c + d*x) - I))**(5/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.44 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.86 \[ \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {i \, {\left (\frac {4 \, {\left (315 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{4} - 420 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a - 168 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{2} - 144 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{3} - 160 \, a^{4}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {9}{2}} a - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {7}{2}} a^{2}} + \frac {315 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right )}{a^{\frac {3}{2}}}\right )}}{4480 \, a d} \]

[In]

integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/4480*I*(4*(315*(I*a*tan(d*x + c) + a)^4 - 420*(I*a*tan(d*x + c) + a)^3*a - 168*(I*a*tan(d*x + c) + a)^2*a^2
- 144*(I*a*tan(d*x + c) + a)*a^3 - 160*a^4)/((I*a*tan(d*x + c) + a)^(9/2)*a - 2*(I*a*tan(d*x + c) + a)^(7/2)*a
^2) + 315*sqrt(2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c)
 + a)))/a^(3/2))/(a*d)

Giac [F]

\[ \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^2/(I*a*tan(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \]

[In]

int(cos(c + d*x)^2/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(cos(c + d*x)^2/(a + a*tan(c + d*x)*1i)^(5/2), x)